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THE PRINCIPLE OF POSITIVE OR NEGATIVE 
FEEDBACK

An oscillator can be considered to be an amplifier with a trans-
fer function G(jω), combined with a feedback network with a
transfer function H(jω) (cf Fig. 9.1). The system has the poten-
tial to oscillate at the frequencies for which the signal coming
from the feedback block adds in phase with the input signal. This
implies that the phase offset of the loop must be 180° (or
rather 180°+k·360°) for negative feedback (- sign in Fig. 9-1) or
equal to a multiple of 360° for positive feedback (+ sign in Fig. 9-
1). In order for oscillations to establish themselves, it is also
necessary that the signal be amplified each time it passes
through the feedback loop. This implies that the gain of the loop
must be greater than one. Under these conditions, the amplitude
of the oscillations will grow even if the input signal is reduced to
zero. When the amplitude of the oscillations becomes large, the
amplifier will start to saturate, which reduces the gain at the
oscillation frequency. The oscillations will then become stable
when the gain of the loop at the oscillation frequency becomes
exactly equal to one.

Fig 9-1: The oscillator presented as a system of positive or neg-
ative feedback.

G(jω)

H(jω)
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OSCILLATION CONDITIONS AND THE BARKHAUSEN 
CRITERION

The output voltage of the system in Fig. 9-1 can be expressed as:

(9.1)

with the + sign if there is negative feedback and the - sign if
there is positive feedback.
For the oscillator, the output voltage is non-zero no matter what
the input signal, even when this signal is zero. This last case is
only possible when the gain G(jω) becomes infinite (which is not
attainable) or when the denominator of (9.1) becomes zero for a
certain frequency in radians ω0:

(9.2)

Eqn. 9.2 implies one condition for the gain and one for the phase:
(9.3)

and: (9.4)

In order for the system to oscillate, it is thus necessary that
the gain of the loop have a modulus of exactly one with a total
phase difference of the loop of 180° (negative FB) or zero (posi-
tive FB). The condition given by (9.3) corresponds to the
Barkhausen criterion.
The feedback network usually determines the oscillation fre-
quency. It often consists of a passive circuit with a bandpass
transfer function, with no phase offset at the resonant fre-
quency. For a wide-band circuit, the phase varies slightly around
the resonant frequency and the harmonics created by the non-
linearity of the amplifier are slightly attenuated. The more
selective the circuit, the more the phase offset varies rapidly
around the resonant frequency, and the output signal approaches
a purely sinusoidal signal.

Vout
G jω( )

1 G jω( )H jω( )±
--------------------------------------Vin=

G jω0( )H jω0( ) 1+−=

G jω0( )H jω0( ) 1=

G jω0( )H jω0( ){ }arg
180° for negative FB 
0° for positive FB⎩

⎨
⎧

=
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ANALYSIS OF THE “THREE-POINT” OSCILLATOR (1/2)

The gain of the loop is given by:

(9.5)

where the input impedance of the bipolar transistor Zin has been
included in  (and we can do the same with the output conduct-
ance of the bipolar transistor gce and Z2, as well as the capaci-
tance Cbc and Z3). The gain of the loop being negative (negative
feedback), the oscillation condition requires it to be equal to –1,
from which we get:

(9.6)

or:

(9.7)

a) General diagram.

b) Equivalent small-signal diagram.
Fig 9-2: “Three-point” oscillator.
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ANALYSIS OF THE “THREE-POINT” OSCILLATOR (2/2)

If the feedback network is composed only of reactive elements
 for  and the input impedance of the active

element is purely resistive and equal to , the
oscillation condition then reduces to:

(9.8)

from which we get: (9.9)

Since , Eqn. 9.9 implies that Z1 and Z2 must be reactances
of the same type (with the same sign), either both capacitances
or both inductances. Colpitts, Pierce and Clapp oscillators
(cf Fig. 9-3 a, b, c) correspond to the case in which the imped-
ances Z1 and Z2 are capacitances and Z3 is an inductance. The
case in which Z1 and Z2 are inductances and Z3 is a capacitance
corresponds to the Hartley oscillator (cf Fig. 9-3 d). 

a) Pierce. b) Clapp.

c) Colpitts. d) Hartley.
Fig 9-3: Différent types of oscillators.
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ANALYSIS OF THE PIERCE OSCILLATOR (1/2)

By considering the input impedance of the transistor of the
Pierce oscillator presented in Fig. 9-4 as being much less than
the impedance of the capacitor C1 at the oscillation frequency,
the oscillation condition (9.7) becomes:

(9.10)

or: (9.11)

from which we get the oscillation frequency in radians ω0:

(9.12)

The losses of the inductances are compensated by the active
element. The oscillations are maintained by a particular value
gmcrit of the transconductance given by:

(9.13)

where  is the unloaded quality factor of the induc-
tor.

Fig 9-4: Pierce oscillator.
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Z3 L r jωL+= =
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C1 C2 ω2LC1C2–+ 0=⎩
⎪
⎨
⎪
⎧
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1
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ANALYSIS OF THE PIERCE OSCILLATOR (2/2)

The holding condition for the oscillations is thus given by:

(9.14)

Eqn. 9.14 shows that the transconductance must be large when
the losses in the inductor are large (or the unloaded quality fac-
tor is small). For the oscillations to begin, we need .
For  however, the oscillations will be damped
(cf Fig. 9-5).

Fig 9-5: Conditions for oscillations to begin and be maintained.
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QL
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QL
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ω0 C1 C2+( )

QL
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THE EFFECT OF TRANSISTOR CURRENT GAIN ON THE 
PIERCE OSCILLATOR

If the input impedance of the transistor is not negligible in rela-
tion to Z1 and can be considered purely resistive
( ), the oscillation condition (9.7) becomes:

(9.15)

or: (9.16)

from which we get the oscillation frequency in radians ω0:

(9.17)

with: (9.18)

We remark that the losses in the inductor, modeled by the
resistance r associated with the input impedance  of the bipo-
lar transistor, noticeably modify the resonant frequency in rela-
tion to the ideal case given by (9.12). This effect is negligible as
long as .
The critical transconductance assuring the continuation of the
oscillations is given by:

(9.19)

for  and  where .
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⎪
⎪
⎧
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--------------------------------------
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-----------------------------≅= =
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ANALYSIS BY THE NEGATIVE RESISTANCE METHOD

Once excited, an ideal resonant circuit (meaning without losses),
will continue to oscillate indefinitely. In reality, the oscillations
will dampen until they disappear due to the dissipation of energy
in the resistances. The role of the active element is precisely to
provide the energy necessary to maintain the oscillations and
thus to compensate the energy dissipated in the resistance r,
representing the losses of the resonant circuit. This source of
energy can be interpreted as a negative resistance. As long as
the total series resistance of the circuit seen by the resonant
circuit in Fig. 9-6 is negative, the oscillations will grow, whereas
they will be attenuated as long as this resistance remains posi-
tive. The amplitude of the oscillations is maintained when the
negative resistance exactly compensates the loss resistance.
The critical oscillation condition is thus expressed by:

(9.20)

or: (9.21)

where Xm is the reactance of the resonant circuit.

Fig 9-6: Resonant circuit in which the losses are compensated 
by a negative resistance.

L

r
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C

Zc

Zm
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Zm Zc+ 0=
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⎨
⎧

I

V

Zm ω( ) Zc ω gm( , )+ 0=

Re Zc{ }– Rc ω gm( , )≡ r=

Im Zc{ }– Xc ω gm( , )≡ Xm ω( )=⎩
⎨
⎧
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LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY 
THE NEGATIVE RESISTANCE METHOD (1/3)

This approach can be applied to the Pierce oscillator shown in
Fig. 9-7 a). In this case the resonant RLC circuit in Fig. 9-6
reduces to an inductance in series with the loss resistance. The
series capacitance forming the series resonant circuit of Fig. 9-
6 is thus included in the impedance Zc of the active circuit. The
small-signal equivalent diagram is shown in Fig. 9-7 b) where we
have assumed that . The input impedance of
this circuit is then:

(9.22)

a) Pierce oscillator.

b) Small-signal equivalent circuit diagram.
Fig 9-7: Negative resistance of the Pierce oscillator.
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LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY 
THE NEGATIVE RESISTANCE METHOD (2/3)

The oscillation frequency is then given by the condition on the
imaginary part:

(9.23)

from which we get:

(9.24)

When the inductor is connected, the circuit will oscillate if the
resistance Rc is equal to the loss resistance of the inductor r,
from which we get the following oscillation condition:

(9.25)

We find once again the result (9.13) previously obtained by
applying the Barkhausen criterion.

Im Zc{ }– Xc≡ Xm= 1
ωC12
------------- ωL=⇒

ω0
1

LC12
----------------= with: C12

C1C2
C1 C2+-------------------≡

gm gmcrit r ω0
2C1C2⋅ r

L
--- C1 C2+( )=≡

ω0 C1 C2+( )
QL

-------------------------------= =
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LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY 
THE NEGATIVE RESISTANCE METHOD (3/3)

A more careful analysis can be carried out using the diagram in
Fig. 9-8 where the capacitor C3 has been added in order to take
the parasitic capacitance associated with the inductor and the
capacitance Cbc of the bipolar transistor into account. The
small-signal equivalant circuit diagram in Fig. 9-8 b) lets us calcu-
late the impedance Zc:

(9.26)

From which we get:

(9.27)

(9.28)

a) Pierce oscillator.

b) Small-signal equivalent circuit diagram.
Fig 9-8: Negative resistance of the Pierce oscillator.
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IMPEDANCE POINTS OF THE ACTIVE CIRCUIT

An effective representation that allows a good comprehension of
the oscillator and simplifies its dimensioning, is obtained by plot-
ting the points corresponding to the impedance  in the
complex plane as a function of the transconductance. As indi-
cated in Fig. 9-9, we obtain a semi-circle centered on the imagi-
nary axis and entirely contained in the 3rd quadrant. 

Fig 9-9: Representation of the oscillator in the complex plane.
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⎝ ⎠
⎜ ⎟
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EXISTENCE CONDITION OF A STABLE POINT

We can also plot the impedance points  as a function of
the frequency in radians. For an inductance with losses, we
obtain a straight line parallel to the imaginary axis passing
through the point on the x-axis –r. The critical oscillation condi-
tion then corresponds to the intersections A and B of the
straight line and the semi-circle. We can show that only the
point A corresponds to stable oscillations. The oscillation fre-
quency in radians ω0 and the critical transconductance gmcrit
corresponding to the stable point A can be found by resolving
the system of equations (9.21) with  as a function of ω
and gm , where Rc and Xc are given by (9.27) and (9.28). 
The negative resistance –Rc of the circuit attains a minimum
(maximum in absolute value):

(9.29)

for a specific value gmopt of the transconductance:

(9.30)

If the loss resistance of the inductor r is greater than 
there is no longer an intersection, and oscillations are no longer
possible no matter what the value of the transconductance. The
existence condition of a solution can thus be expressed as:

(9.31)

Zm ω( )–

Xm ωL=

Rc-max
1

2ωC3 1
C3
C12
--------+⎝ ⎠

⎛ ⎞
--------------------------------------=

gmopt ω C1 C2
C1C2

C3
-------------+ +⎝ ⎠

⎛ ⎞=

Rc-max

1

2ωC3 1
C3
C12
--------+⎝ ⎠

⎛ ⎞
-------------------------------------- r≥
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APPROXIMATION OF THE OSCILLATION FREQUENCY

The representation in Fig. 9-9 also allows us to qualitatively eval-
uate the influence of a variation in the capacitances Ci (i=1,2,3)
on the oscillation frequency. For example, when C1 and C2
decrease, the radius of the circle also decreases, and the point
A moves downward, which has the effect of increasing ω0. When

, the semi-circle reduces to a horizontal straight line,
and ω0 no longer depends on gm. In general, the oscillation fre-
quency is a function of r and thus of the quality factor QL of the
inductor. This is not good, because this quality factor can vary
greatly, causing a large dispersion of the oscillation frequency.

If the losses in the inductor are small (and thus the quality fac-
tor QL is high), the vertical straight line in Fig. 9-9 approaches
the imaginary axis. The sensitivity of ω0 to r and thus to QL then
becomes small. In these conditions, we can approximate the cir-
cle by the tangent to the point . An approximate value of
ω0 is thus given by setting  in the term  of
(9.21) and solving for ω0. We then find:

(9.32)

Fig 9-10: Approximation of the oscillation frequency.

C3 0=
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APPROXIMATION OF THE CRITICAL 
TRANSCONDUCTANCE

For the same conditions, an approximation of the critical
transconductance can be found by solving  where
Rc is given by (9.27) and ω by the approximation (9.32). We then
find:

(9.33)

where ,  and . Eqn. 9.33
only has a solution for  and thus for

(9.34)

We again find the existence condition (9.31) where ω is replaced
by (9.32).

Rc ω gm( , ) r=

gmcrit
1
r---

α1

2α3
2---------- 1 1

2α3 α1 1+( )
α1QL

------------------------------⎝ ⎠
⎛ ⎞

2
––⋅

1
r---

α1 1+( )2

α1QL
2-----------------------⋅

≅

≅
ω0
QL
------- C1 C2+( ) 1

C3
C12
--------+⎝ ⎠

⎛ ⎞⋅=

α1 C1 C2⁄≡ α3 C3 C2⁄≡ QL ω0L( ) r⁄≡
2α3 α1 1+( )( ) α1QL( )⁄ 1<

QL 2α3 1 1
α1
------+⎝ ⎠

⎛ ⎞≥ 2
C3
C12
--------=
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MINIMUM CRITICAL TRANSCONDUCTANCE

Fig. 9-11 shows that gmcrit is minimum for , meaning for
 as long as . The minimum value of gmcrit is

thus given by:

(9.35)

Fig 9-11: gmcrit as a function of the ratio .α1 C1 C2⁄≡

α1 1=
C1 C2= QL >>2α3

gmcrit-min
1
r
--- 2

QL
-------⎝ ⎠
⎛ ⎞ 2
⋅

ω0
QL
------- 2 C1 2C3+( )⋅= =
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OSCILLATION START-UP TIME

As soon as , the oscillations begin to increase
exponentially, starting from the noise, with a time constant given
by:

(9.36)

where Rc corresponds to a certain value of the transconductance
 fixed by the polarization current.

The start-up time is minimum for  and thus for
. The corresponding time constant is given by:

(9.37)

Fig 9-12: Start-up of oscillations.
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ANALYSIS USING Y AND Z PARAMETERS

The validity of the methods of analysis presented until now is
limited to simple circuits and to low frequency, because they do
not take into account all the parasitic elements, especially those
associated with the active element. Often this element is simply
characterized in terms of its S or Y parameters for a given
operating point. An oscillator functioning in the small-signal
regime can be modeled by the general diagram in Fig. 9-13 where
the active component is represented by its admittance matrix Y
and the feedback network by its impedance matrix Z. From the
definitions of the admittance and impedance matrices we have:

(9.38)

We can show that the condition whereby the voltages V1 and V2
are non-zero, and there are oscillations, is given by:

(9.39)

with: (9.40)

The oscillation condition (9.39) is general and can thus be applied
to practically any oscillator.

Fig 9-13: General diagram of an oscillator.
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–I2I2I1
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I1 y11V1 y12V2+=
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EXAMPLE OF THE PIERCE OSCILLATOR (1/2)

The Pierce oscillator presented in Fig. 9-4 was redrawn in Fig. 9-
14, where the transistor is simply represented by its admittance
matrix. The impedance matrix of the feedback circuit can be
calculated by applying the definitions. We find:

(9.41)

where: (9.42)

From which we get: (9.43)

For the transistor, we set:

(9.44)

Fig 9-14: General diagram of an oscillator.
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EXAMPLE OF THE PIERCE OSCILLATOR (2/2)

By plugging (9.41), (9.42) and (9.44) into (9.39), we find:

(9.45)

with: (9.46)

For the bipolar transistor in Fig. 9-4, by ignoring the base cur-
rent and assuming that the transistor is working at low fre-
quency, we can set  and . Under
these conditions,  and so:

(9.47)

By taking  for  and , we find:

(9.48)

which is just the condition (9.11). By taking the base current into
account we will get  and so

(9.49)

The condition (9.11) then becomes:

(9.50)

which is identical to the condition (9.16).
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⎛ ⎞+=

1
ωC1
-----------– 1

ωC2
-----------– ωL+ r

gm
β

------ 1
ωC1
-----------–=



© C. C. ENZ Oscillators 19.3.08

9-22

QUASI-SINUSOIDAL CONTROL VOLTAGE

If , oscillations will begin and grow. When their ampli-
tude becomes large, harmonics are generated by the non-linear-
ity of the active element. An oscillator analysis which takes
these non-linear characteristics into account is difficult, even
impossible. For the Pierce oscillator presented in Fig. 9-8,
assuming that the quality factor of the inductor is high
( ), the collector current, which is rich in harmonics, is
filtered by the inductance. The current integrated over the
capacitance C1 is then approximately sinusoidal. As long as the
capacitance C1 is linear, the control voltage of the bipolar tran-
sistor can also be considered to be sinusoidal:

(9.51)

The collector current is then given by:

(9.52)

where: (9.53)

Notice that it is essentially the parasitic capacitance C3 that
will couple harmonic components of the collector current to the
capacitance C1 and add them to the control voltage vbe(t). The
hypothesis of a sinusoidal control voltage is thus only valid when
the parasitic capacitance C3 remains negligible in relation to C12.

gm gmcrit>
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---------------------------------------------------------
⋅ Iq e
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⋅= = =
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DECOMPOSITION OF THE COLLECTOR CURRENT 
INTO A FOURIER SERIES 

The function  can be expanded into a Fourier series:

(9.54)

where  is the modified Bessel function of order 0 and 
are the modified Bessel functions of order n. The collector cur-
rent can thus be written:

(9.55)

where Idc represents the average value. The current  nor-
malized to Iq is represented in Fig. 9-15 for an amplitude of 
with the fundamental component , along with
the 2nd and 3rd harmonics  ( ).

Fig 9-15: Collector current for .
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AVERAGE VALUE OF THE COLLECTOR CURRENT 

Fig. 9-15 also shows the average value of the collector current,
which becomes a function of the amplitude of the sinusoidal sig-
nal applied between the base and the transmitter:

(9.56)

As indicated in Fig. 9-16, the average current Idc increases rap-
idly with the amplitude of the sinusoidal signal when .

Fig 9-16: Increase of the average current as a function of the 
normalized amplitude of the sinusoidal signal.
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HARMONIC COMPONENTS OF THE COLLEC-
TOR CURRENT

Fig. 9-17 shows the harmonic components of the collector cur-
rent given by (9.55), normalized to the average value

, as well as the normalized peak value:

(9.57)

We remark that the amplitude of the fundamental grows rapidly
and becomes approximately equal to the average value when

 is slightly greater than UT. It tends toward an asymptotic
value equal to  (+6 dB in Fig. 9-17).

Fig 9-17: Fundamental component and harmonics as functions 
of the normalized amplitude of the sinusoidal signal.
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EFFECTS OF NON-LINEARITIES OF THE ACTIVE 
ELEMENT

The active element (often reduced to a transconductance) gen-
erally has non-linear characteristics which generate harmonics.
If the quality factor of the resonant circuit is high (as for
quartz resonators or SAWs), the current I that traverses the
resonant RLC circuit can be considered to be sinusoidal, even if
the voltage V is strongly distorted. Thus, the exchange of
energy between the active circuit and the resonator mainly
takes place at the fundamental frequency. The non-linear active
circuit can thus be replaced by its equivalent impedance Zc1 at
the fundamental frequency. This is defined by:

(9.58)

where V1 is the complex voltage of the fundamental component
V, which depends on the amplitude of the sinusoidal current I.

Zc1
V1
I------–≡
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TRANSCONDUCTANCE FOR THE FUNDAMENTAL

At low frequency, the variations in current  and the varia-
tions in the control voltage  for the fundamental frequency
are in phase. The small-signal transconductance gm can thus be
replaced by the (real) transconductance for the fundamental

 given by:

(9.59)

where the index (1) refers to the fundamental and 
is the transconductance without an applied signal ( ). The
function  is represented in Fig. 9-18 as a function of
the normalized amplitude . We remark that Gm(1)
decreases rapidly to attain about 50% of the maximum value
obtained in the small-signal regime for an amplitude of 3.5·UT or
around 90 mV.

Fig 9-18: Transconductance for the fundamental as a function of 
the amplitude of the oscillations.
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LIMITATION OF THE AMPLITUDE

The amplitude of the oscillations will stabilize at a certain value
for which . From this equality we get the polari-
zation current Iq necessary to obtain a certain oscillation ampli-
tude:

(9.60)

where . The current Iq normalized to Icrit is
represented as a function of the normalized amplitude

 in Fig. 9-19. We remark that for large amplitudes,
this currents tends toward the asymptotic value:

(9.61)

Fig 9-19: Polarization current normalized to the critical current 
as a function of the amplitude of the oscillations.
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EXAMPLE (1/4)

We would like to realize a Pierce oscillator according to the dia-
gram and specifications of Fig. 9-20. Knowing that the transcon-
ductance and thus the energy consumption is minimum for

 and that these capacitances must be at least one
order of magnitude greater than the parasitic capacitances (in
particular ) in order to be able to control the oscilla-
tion frequency, we take . So .
From (9.32) we have

The loss resistance of the inductance is given by:
.  is given by (9.33) and is

, from which we get the critical current
. The effective transconductance  and the

polarization current  in order to have an oscillation amplitude
of  can thus be deduced from (9.60) with

. We find .
The circuit above has been simulated with Spice and the simula-
tion results are given in Fig. 9-21.

Fig 9-20: Example of the dimensioning of a Pierce oscillator.
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EXAMPLE (2/5)

Fig 9-21: The supercritical condition with .
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EXAMPLE (3/5)

Fig 9-22: The critical condition with .
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EXAMPLE (4/5)

Fig 9-23: The subcritical condition with .

C1 C2

C3

Lr
Iq

Vcc

-

À

Â

Iq Iccrit<



© C. C. ENZ Oscillators 19.3.08

9-33

EXAMPLE (5/5)

Fig. 9-24 shows the simulation results obtained by replacing the
ideal transistor of Fig. 9-20 by the MMBR941 used in Chapter 7
(cf Fig. 7-12). We notice that the simulation is not very differ-
ent from that obtained with the ideal transistor. Specifically,
the oscillation frequency is still 10 MHz, but the amplitudes at
nodes 1 and 2 are smaller (75 mV for V(1) and 90 mV for V(2)
instead of 100 mV).

Fig 9-24: Simulation with the transistor MMBR941.
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NON-LINEAR EFFECTS (1/3)

The graph in Fig. 9-9 corresponds to a linear analysis and thus
does not take the non-linear effects introduced by the active
element into account. These non-linear effects can be studied by
simulating the circuit of Fig. 9-25 on which a sinusoidal current

 is applied, and having the simulator calculate the correspond-
ing voltage . We can then do a FFT of the voltage  and
evaluate the amplitude of the fundamental . The funda-
mental’s impedance  is then simply given by the ratio

. We can repeat this operation for different ampli-
tudes  and for different polarization currents . We then
find the graphs of Fig. 9-26.
Fig. 9-26 a) presents the impedance points for the fundamentals

 as functions of the polarization current  varying from
1 μA to 1.728 mA and for different amplitudes of the sinusoidal
current signal  of1 µA, 50 µA, 100 µA, 200 µA, and 500 µA.
We remark that for small amplitudes ( ) we once again
find the circle obtained during the linear analysis. This circle
then turns into an ellipse when the amplitude of the sinusoidal
signal increases due to non-linear effects.

Fig 9-25: Circuit used for the simulation of the impedance for the 
fundamental .
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NON-LINEAR EFFECTS (2/3)

Fig. 9-26 b) presents the location of the impedance points for
the fundamentals  as a function of the amplitude of the
sinusoidal current signal  varying from 1 µA to 1 mA for dif-
ferent polarization currents  20 µA, 100 µA, 200 µA, 500 µA,
and 1 mA. For each of these polarization currents, the location
starts on the circle with a direction tangent to the circle when
the amplitude is small, and then gets farther away from this cir-
cle. By considering for example the curve corresponding to

, we remark that the operating point can be rather
far from the one that we would obtain using linear analysis. It is
even possible that this intersection point doesn’t exist anymore
due to these non-linear effects. In fact, if we assume that the
resistance  is equal to 5 kΩ, when the polarization current is
greater than 200 µA, the trajectory no longer crosses the
straight line corresponding to the impedance of the inductor.
There are then no longer any operating points and the oscilla-
tions don’t begin even though the polarization current is greater
than the critical current.

Zc 1( )
Iin

Iq

Iq 200μA=

r
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NON-LINEAR EFFECTS (3/3)

a)  as a function of the polariza-
tion current Iq from 1 μA to 1.728 mA 
and for different amplitudes Iin of the 

applied sinusoidal signal.

b)  as a function of the ampli-
tude Iin of the applied sinusoidal sig-

nal from 1 μA to 1 mA and for 
different polarization currents Iq.

Fig 9-26: Impedance of the fundamental  as a function of 
the amplitude and the polarization current.
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EXAMPLE

It is interesting to verify with simulations that if the polariza-
tion current is large, the oscillations are not likely to begin. By
taking once again the graph in Fig. 9-9, we can calculate the 
corresponding to the intersection point B

(9.62)

which in the preceding example was , which corre-
sponds to a polarization current of . Fig. 9-27 corre-
sponds to a simulation for a current of . It indeed shows
that the oscillations do not begin.

Fig 9-27: Condition .
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QUARTZ (1/2)

The symbol for quartz and its equivalent circuit diagram are
shown in Fig. 9-28. For each mechanical oscillation mode  there
is a corresponding series resonant circuit , ,  for which
the series impedance is called motional impedance . The
inductance  translates the effect of the mass, the capacity

 that of the compliance (elasticity), and the resistance 
that of the losses of the mechanical resonator. Each mechanical
oscillation mode can be characterized by its resonant frequency

 and its quality factor:

(9.63)

Due to the boundary effects, these frequencies  are usually
not whole multiples of each other. Since , when the
crystal oscillates in a certain mode k, all the other branches can
be ignored, even if the voltage V(t) contains significant harmonic
components. The motional current  can then be considered to
be sinusoidal, even if the voltage  is strongly distorted.

Fig 9-28: Symbol and equivalent circuit diagram for quartz.
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QUARTZ (2/2)

In order to simplify the notation, we consider a single mode k
and omit the corresponding index. The motional impedance  is
given by:

(9.64)

We define the relative frequency spread (pulling) by:

(9.65)

In an oscillator, the resonant frequency in radians  is always
very close to the motional frequency  and so . The
motional impedance is thus approximated by:

(9.66)

The mechanical oscillation energy is given by:

(9.67)

while the dissipated mechanical power is:

(9.68)

where  corresponds to the amplitude of the sinusoidal current.
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THE QUARTZ OSCILLATOR

Fig. 9-29 shows the Pierce oscillator of Fig. 9-4 where the
inductor has been replaced by quartz. The best way to partition
the circuit in order to carry out the negative resistance method
of analysis is to consider the parasitic capacitances , 
and  to be a part of the circuit, and to isolate the series
branch of the quartz resonator. Since the current flowing in this
series branch can be considered to always be sinusoidal, the
exchange of energy between the circuit and the series branch of
the resonator always happens at the fundamental frequency. The
effects of the non-linearities of the active circuit can thus be
entirely characterized by the impedance 
where  is the complex amplitude of the fundamental. In
addition, the frequency dependence of  around  is
orders of magnitude smaller than that of  and so the fre-
quency  can be considered to be constant and equal to  dur-
ing the evaluation of , while the frequency dependence of

 is expressed in terms of the “pulling”  according to (9.65).

Fig 9-29: Quartz Pierce oscillator.
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LINEAR ANALYSIS OF THE QUARTZ OSCILLATOR

The linear analysis of the quartz oscillator of Fig. 9-29 is car-
ried out in the same way as that for the LC oscillator. The dif-
ference is that the location of the impedance of the inductor as
a function of  is replaced by that of  according to (9.66)
with the “pulling”  as a parameter instead of . The circuit
impedance  is the same as (9.26). The location of the imped-
ance  as a function of  is then identical to that of Fig. 9-9.
We then obtain the impedance locations presented in Fig. 9-30.
The results are identical to those already obtained for the LC
oscillator.

Fig 9-30: Representation of the quartz oscillator in the complex 
plane.
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“OVERTONE” QUARTZ OSCILLATOR

The resonant frequency of quartz oscillators for the fundamen-
tal mode is typically limited to 100 MHz. Nevertheless, we can
force the resonator to oscillate not at the fundamental, but at a
higher mode (generally the 3rd or 5th). The oscillation condition
(9.47) requires that  and  have the same sign, and that

. For the resonator to oscillate at a higher
mode, it is necessary for the parallel LC circuit to have a nega-
tive reactance (or be capacitive) at the overtone frequency. We
can evaluate the oscillation frequency by replacing  and  by

(9.69)

where  and where we have ignored the capaci-
tances  and . So that  at the oscillation frequency,
it is necessary that .  is thus positive when .
The oscillation frequency will then be slightly greater than 
and also greater than . Of course this analysis is a rough
approximation, because it assumes that the transistor has been
reduced to a simple transconductance, which is definitely not
the case at overtone frequencies.

Fig 9-31: “Overtone” Pierce oscillator.
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EXAMPLE: COMMON BASE OSCILLATOR

We would like to analyze and dimension the oscillator in Fig. 9-32
for a frequency of 10 MHz. We will compare the results obtained
using the three proposed methods of analysis.
The first step of the linear analysis is to draw the small-signal
diagram. We then get the diagram in Fig. 9-33.

Fig 9-32: Common base oscillator.

Fig 9-33: Equivalent small-signal diagram.
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ANALYSIS USING THE BARKHAUSEN CRITERION

In the diagram in Fig. 9-33, we can virtually open the loop
between the voltage V1 and the current controlled by this volt-
age. We then get the diagram presented in Fig. 9-34. We can
simplify the calculations by assuming that  which
is the same as neglecting . The open-loop gain is thus given by:

(9.70)

By applying the Barkhausen criterion we find the conditions for
the real and imaginary parts:

(9.71)

We can solve (9.71) for  and  and find  and :

(9.72)

where  and . We remark
that a solution exists only for .

Fig 9-34: Small-signal equivalent circuit diagram in open loop.
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THE NEGATIVE CONDUCTANCE METHOD (1/2)

The losses of the parallel resonant circuit are represented in
the diagram in Fig. 9-33 by the conductance . These losses
must be compensated by a negative conductance provided by the
circuit in Fig. 9-35. By assuming once again that 
and that  we find the input admittance :

(9.73)

The (negative) conductance  must thus be equal to  and
the susceptance  must be equal to :

(9.74)

from which we find the resonant frequency in radians, and the
critical transconductance. We find the same results given by
(9.72) and obtained by using the Barkhausen criterion.

Fig 9-35: Calculation of the parallel admittance.

C1

C2RE

–gm·V1

V1
1

RE
--------<< ω0C2

Iin

Vin

Geq

1 RE⁄ << ω0C2
gmRE >> 1 Yin

Yin Gin jBin+≡
ω2C1C2–

gm jω C1 C2+( )+-------------------------------------------≅

Gin Geq–
Bin

1
ωL-------

Gin
ω2C1C2gm–

gm
2 ω2 C1 C2+( )2+

------------------------------------------------≅ Geq–=

Bin
ω3C1C2 C1 C2+( )

gm
2 ω2 C1 C2+( )2+

------------------------------------------------≅ 1
ωL
-------=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧



© C. C. ENZ Oscillators 19.3.08

9-46

THE NEGATIVE CONDUCTANCE METHOD (2/2)

As for the Pierce oscillator, we can represent the admittance
points  in the complex plane as a function of the parameter

 (cf Fig. 9-36). In the same plane, we can also plot the admit-
tance points  as a function of . The intersection
presented in Fig. 9-36 then corresponds to the operating point
(for small signals). From this figure, we can also find an exist-
ence condition for this operating point. In fact, the parallel con-
ductance  must remain smaller than . We also
remark that the approximation of the circle by the tangent at

 gives a value close to , that is to say:

(9.75)

Fig 9-36:  points as a function of  and 
 as a function of .
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ANALYSIS BY THE Y AND Z PARAMETER METHOD

The diagram in Fig. 9-33 is redrawn in Fig. 9-37 to highlight the
elements of the Y and Z matrices. By ignoring the resistance ,
the Y and Z matrices are given by:

(9.76)

where . By applying the
relation (9.39) and separating the real and imaginary parts, we
find the following conditions:

(9.77)

from which we can find the resonant frequency and the critical
transconductance. Once again, we get the same results as with
the analysis using the Barkhausen criterion, given by (9.72).

Fig 9-37: Calculation of the parallel admittance.
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⎧
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DIMENSIONING OF THE COMMON BASE OSCILLATOR

We simplify the calculations by assuming that .
We remark from (9.72) that, as for the Pierce oscillator, the
transconductance is minimum when  is minimum. For

 we find . To satisfy the condition
 we will take . In addition,

The critical transconductance is approximately given by:

To start up the oscillations we take

from which we find the current . The base current
being  times smaller, we take .
With  we find . Simulation results are
given in Fig. 9-39. The average period over 10 periods is 
corresponding to  while the amplitude is about

.

Fig 9-38: Dimensioned common base oscillator.

Rc=47kΩ

L=1µH

VCC = 12 V

RB=330kΩ

CB=1µF

Cc=1µF

C1=500pF
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RL = 1.5 kΩ
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β = 100

ω0 1 LC12⁄≅

C1 C2=
C1 C2 500pF= = L 1μH=
1 RE⁄ << ω0C2 RE 3kΩ=

Geq 1 Rb⁄ 1 RL⁄+ 1 RL⁄≅ 0.667μA V⁄= =

gmcrit Geq C1 C2+( ) C12⁄≅ 4Geq 4 RL⁄= =

gm 3 gmcrit⋅ 12 RL⁄ 8mA V⁄= = =

ICq 208μA=
β 100= RB βRE 300kΩ= =
Uj 0.6V= RC 47kΩ=

993ns
10.07MHz

300mV
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SIMULATION OF THE COMMON BASE OSCILLATOR

Fig 9-39: Simulation of the oscillator
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LC OSCILLATOR WITH TWO TRANSISTORS

When we allow ourselves to use more than one transistor for the
realization of an LC oscillator, we can go back to the diagram
presented in Fig. 9-40. This diagram is very much used for real-
izing integrated VCOs oscillating around 1 GHz. This oscillator is
interesting because it consists of only two active nodes (in con-
trast with the “three point” oscillator which has 3). All the para-
sitic capacitances of these two nodes can thus be absorbed in
the functional capacitances. By assuming that there is no load,
only the losses due to the series resistance  of the inductor
must be compensated. We can thus transform the series resist-
ance to a parallel resistance  or .
The corresponding conductance will need to be compensated by
the negative conductance of the circuit which has the value

. The resonant frequency in radians is simply given by:

(9.78)

and the critical transconductance by:

(9.79)

Fig 9-40: LC oscillator with two transistors.

VDDIqIq L

C C

r

Rp ωL( )2 r⁄= Rp QLωL=

gm 2⁄–

ω0
2

LC
-------=

gmcrit
ω0C
QL

-----------=
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IMPORTANCE OF PHASE NOISE IN TRANSMITTERS

Fig 9-41: General diagram of a transmitter.

Fig 9-42: a) Frequency conversion by an ideal oscillator.
b) Reciprocal mixing.
c)Effect of phase noise in transmitters.
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SIGNAL-TO-NOISE RATIO

Fig 9-43: Degradation of the SNR by the phase noise.
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EXAMPLE OF PHASE NOISE

Fig 9-44: Phase noise measured in an LC oscillator.

Fig 9-45: Phase noise measured in a ring oscillator.


