CHAPTER 9

OSCILLATORS
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THE PRINCIPLE OF POSITIVE OR NEGATIVE
FEEDBACK

G(jw) Vout

H(jw)

Fig 9-1:  The oscillator presented as a system of positive or neg-
ative feedback.

An oscillator can be considered to be an amplifier with a trans-
fer function G(jo), combined with a feedback network with a
transfer function H(jo) (cf Fig. 9.1). The system has the poten-
tial to oscillate at the frequencies for which the signal coming
from the feedback block adds in phase with the input signal. This
implies that the phase offset of the loop must be 180° (or
rather 180°+k-360°) for negative feedback (- sign in Fig. 9-1) or
equal to a multiple of 360° for positive feedback (+ sign in Fig. 9-
1). In order for oscillations to establish themselves, it is also
necessary that the signal be amplified each time it passes
through the feedback loop. This implies that the gain of the loop
must be greater than one. Under these conditions, the amplitude
of the oscillations will grow even if the input signal is reduced to
zero. When the amplitude of the oscillations becomes large, the
amplifier will start to saturate, which reduces the gain at the
oscillation frequency. The oscillations will then become stable
when the gain of the loop at the oscillation frequency becomes
exactly equal o one.
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OSCILLATION CONDITIONS AND THE BARKHAUSEN
CRITERION

The output voltage of the system in Fig. 9-1 can be expressed as:
__ G(jo)
out 1+ G(jw)H(jm)

with the + sign if there is negative feedback and the - sign if
there is positive feedback.

For the oscillator, the output voltage is non-zero no matter what
the input signal, even when this signal is zero. This last case is
only possible when the gain G(jo) becomes infinite (which is not
attainable) or when the denominator of (9.1) becomes zero for a
certain frequency in radians og:

Vv Vv

(9.1)

in

G(Jog)H(oy) = F1 (9.2)
Egn. 9.2 implies one condition for the gain and one for the phase:
IGlog)H({og)| =1 (9.3)

180° for negative FB

d: arg { G(j H(j = 9.4
an 0{G(jog)H({wg)} {OO orpositive Fg. Y

In order for the system to oscillate, it is thus necessary that
the gain of the loop have a modulus of exactly one with a total
phase difference of the loop of 180° (negative FB) or zero (posi-
tive FB). The condition given by (9.3) corresponds tfo the
Barkhausen criterion.

The feedback network usually determines the oscillation fre-
quency. It often consists of a passive circuit with a bandpass
transfer function, with no phase offset at the resonant fre-
quency. For a wide-band circuit, the phase varies slightly around
the resonant frequency and the harmonics created by the non-
linearity of the amplifier are slightly attenuated. The more
selective the circuit, the more the phase offset varies rapidly
around the resonant frequency, and the output signal approaches
a purely sinusoidal signal.
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9-4
ANALYSIS OF THE “THREE-POINT” OSCILLATOR (1/2)

Z3 _j_Colpitts

Clapp
I [z,
Z
; Pierce
a) General diagram.
T N Om Vm | R Z3 | gm.vm Z3
\ | b o —
Vlnl Zln\\% |ZZ I_il Z]_ | lvout Vinl % ZZ[TI" 7 1¢| lVOUt
 p— ' -
opening feedback 7 =717
of the loop network 1= 41 4in

b) Equivalent small-signal diagram.
Fig 9-2:  ““Three-point” oscillator.

The gain of the loop is given by:

—GHEVOUt: _ng’122 _ —Om
Vi~ Zy +Z,+Z5  Yp(L+Y,Zy)+Y,

In

(9.5)

where the input impedance of the bipolar transistor Z;, has been
included in Z', (and we can do the same with the output conduct-
ance of the bipolar transistor g.. and Z,, as well as the capaci-
tance Cy. and Z3). The gain of the loop being negative (negative
feedback), the oscillation condition requires it to be equal to -1,
from which we get:

[
o

012 Zy+ 2y + 2y + 2, (9.6)

or.

Ot Yy (1+Y,Z)+Y, =0 (9.7)
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ANALYSIS OF THE “THREE-POINT” OSCILLATOR (2/2)

If the feedback network is composed only of reactive elements
Z; = j-X; fori = 1,2,3 and the input impedance of the active
element is purely resistive and equal to Z;, = r_=p/9.,, the
oscillation condition then reduces to:

X[+ B)Xy + Xg]=j 1« (X + X, +X3) = 0 (9.8)

from which we get: Xy = BX, (9.9)

Since B >0, Eqn. 9.9 implies that Z; and Z, must be reactances
of the same type (with the same sign), either both capacitances
or both inductances. Colpitts, Pierce and Clapp oscillators
(cf Fig. 9-3 a, b, ¢) correspond to the case in which the imped-
ances Z; and Z, are capacitances and Z3 is an inductance. The
case in which Z; and Z, are inductances and Z3 is a capacitance
corresponds to the Hart/ey oscillator (cf Fig. 9-3 d).

‘ = C2 ! % L2

—=
c) Colpitts. d) Hartley.
Fig 9-3:  Différent types of oscillators.
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ANALYSIS OF THE PIERCE OSCILLATOR (1/2)

L Y’—g—m+'C~'C Y, = joC
1 = oM EI0M 2 = J0%)
r
—C, Z3: L=r+jolL
Cq
—|_ <+ r represents the losses in the inductor

Fig 9-4:  Pierce oscillator.

By considering the input impedance of the transistor of the
Pierce oscillator presented in Fig. 9-4 as being much less than
the impedance of the capacitor C; at the oscillation frequency,
the oscillation condition (9.7) becomes:

g, - ©°1C,C,+jo(Cy +C,-°LC,Cy) = 0 (9.10)
g —®°rC,C, = 0
_wrc,C, =
or: " , (9.11)
C;+Cy-0'LC,C, = 0

from which we get the oscillation frequency in radians wg:

0y = — with: - 12 (9.12)
°” e, ST

The losses of the inductances are compensated by the active
element. The oscillations are maintained by a particular value
Omerit ©f The transconductance given by:

0n(C, +C
=0y rC,C, = ol é 2) (9.13)
L

where Q = (wyL)/T is the unloaded quality factor of the induc-
tor.

gmcﬂ
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ANALYSIS OF THE PIERCE OSCILLATOR (2/2)
The holding condition for the oscillations is thus given by:

0o(Cq +Cy)
gm = gmcrit = QL

(9.14)

Egn. 9.14 shows that the ftransconductance must be large when
the losses in the inductor are large (or the unloaded quality fac-
tor is small). For the oscillations to begin, we need g, > 9y crit-
For 0, <Omcrit however, the oscillations will be damped
(cf Fig. 9-B).

A

I9m = Imerit = (DO(Cs-I-CZ) \//\\//\\/ >
L

0s(C, +C))
Im <Imerit = : éL - \//\\//-\\_/ >t

A
_ 0g(C1+Cy)

] v v v

Fig 9-5:  Conditions for oscillations to begin and be maintained.
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THE EFFECT OF TRANSISTOR CURRENT GAIN ON THE
PIERCE OSCILLATOR

If the input impedance of the fransistor is not negligible in rela-
tfion to Z; and <can be considered purely resistive
(Z;, = r.=B/9,,). the oscillation condition (9.7) becomes:

gm+(%m+jcocl)-[1+jcoc:2(r+joaL)]+j(o(:2 =0 (9.15)

g
On(1+ %) - mZCZ(FmL +1Cy) = 0
or: (9.16)
Imr 2 _
~5Ca*Cy#Cpm’LCCp = 0

from which we get the oscillation frequency in radians g
wy = 1/,/LCqq (9.17)

with:  Co= b2 Lo
B 1+(9,")/B  1+r/r_

=T e (9.18)

and C’1 =

We remark that the losses in the inductor, modeled by the
resistance r associated with the input impedance r_ of the bipo-
lar transistor, noticeably modify the resonant frequency in rela-
tion fo the ideal case given by (9.12). This effect is negligible as
long as B>>g,r.

The critical transconductance assuring the continuation of the
oscillations is given by:

2 2
_ erCC,  0rCC,  o(Cp+Cy)
merit = 1+1(1—032'—C2) ) 1—9(1+g_mr) - o
B B B

for B>>a and B>>gr where a =C,/C;.
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ANALYSIS BY THE NEGATIVE RESISTANCE METHOD

Z,+Z, =0

~ N O >
/
;LB
, % \ R v
Zl C | V —RE{ZC}ERC =r

| |
\ ;g / % {—lm{zc}:xC = X,
\r / c

N4

Fig 9-6:  Resonant circuit in which the losses are compensated
by a negative resistance.

Q <

Once excited, an ideal resonant circuit (meaning without losses),
will continue to oscillate indefinitely. In reality, the oscillations
will dampen until they disappear due to the dissipation of energy
in the resistances. The role of the active element is precisely to
provide the energy necessary to maintain the oscillations and
thus to compensate the energy dissipated in the resistance r,
representing the losses of the resonant circuit. This source of
energy can be interpreted as a negative resistance. As long as
the total series resistance of the circuit seen by the resonant
circuit in Fig. 9-6 is negative, the oscillations will grow, whereas
they will be attenuated as long as this resistance remains posi-
tive. The amplitude of the oscillations is maintained when the
negative resistance exactly compensates the loss resistance.
The critical oscillation condition is thus expressed by:

Z (0) +Z,(0,9,) = 0 (9.20)

or: (9.21)

-Re{Z.} =R (0,0,) =T
{_Im{zc} EXc((’o’gm) = Xm((D)

where X, is the reactance of the resonant circuit.
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LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY
THE NEGATIVE RESISTANCE METHOD (1/3)

I
oO—r !
v
—_ C2 T% ::C2
Cq
L =

a) Pierce oscillator.

> * - C
vl 7 ¢ ©°C,C,
l G T C.,C
o —* ]_C12 _ 7172

b) Small-signal equivalent circuit diagram.
Fig 9-7:  Negative resistance of the Pierce oscillator.

This approach can be applied to the Pierce oscillator shown in
Fig. 9-7 a). In this case the resonant RLC circuit in Fig. 9-6
reduces to an inductance in series with the loss resistance. The
series capacitance forming the series resonant circuit of Fig. 9-
6 is thus included in the impedance Z; of the active circuit. The
small-signal equivalent diagram is shown in Fig. 9-7 b) where we
have assumed that (g,,/B)<<wyC;. The input impedance of
this circuit is then:

gm+Jw(C1+C2): __9m A S _ix, (9.22)

7 =
2 2 joC c
o) 01C2 o) C1C2 12

c

v
|
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LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY
THE NEGATIVE RESISTANCE METHOD (2/3)

The oscillation frequency is then given by the condition on the
imaginary part:

—|m{zc}zxczxm:>(%12=m (9.23)

from which we get:

cC,C
. with: Cpp= L2
/LC,, C1+GC

When the inductor is connected, the circuit will oscillate if the
resistance R. is equal to the loss resistance of the inductor r,
from which we get the following oscillation condition:

2 r 0e(Cy +Cy)
O9m = Imerit =1 (DOC1C2 = [(Cl + CZ) = 9 (9-25)
L

(9.24)

(DO:

We find once again the result (9.13) previously obtained by
applying the Barkhausen criterion.

©C.C.ENZ Oscillators 19.3.08



9-12

LINEAR ANALYSIS OF THE PIERCE OSCILLATOR BY

THE NEGATIVE RESISTANCE METHOD (3/3)

I
o—>—+ ¢
Vl —LC3

b) Small-signal equivalent circuit diagram.

Fig 9-8:  Negative resistance of the Pierce oscillator.

A more careful analysis can be carried out using the diagram in
Fig. 9-8 where the capacitor C3 has been added in order to take
the parasitic capacitance associated with the inductor and the
capacitance Cp. of the bipolar transistor intfo account. The
small-signal equivalant circuit diagram in Fig. 9-8 b) lets us calcu-

late the impedance Z:
gm + J(O(Cl + CZ)
2 .
From which we get:

Z. = -

ng1C2

Re = 2 2 2

g% Cq+ ®%(Cy + Cy)(C1Cy+C;Cq+ CyCy)

Xe = 2 2 2
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IMPEDANCE POINTS OF THE ACTIVE CIRCUIT

An effective representation that allows a good comprehension of
the oscillator and simplifies its dimensioning, is obtained by plot-
ting the points corresponding to the impedance Z.(g,,) in the
complex plane as a function of the transconductance. As indi-
cated in Fig. 9-9, we obtain a semi-circle cen‘rered on the imagi-
nary axis and entirely contained in the 3™ quadrant.

B 1
C3 Im
20C, 1+ q A
\1 R —r
— | » Re
L1 Im=Imerit 19m= 1
L 222 o(C3+Cqp)
-oaL
’ C,Cy
C12
C1 + C2
______ | X,
g :g { @ ——— — — — — — 1 _ 1+ 2C3/C12
m—Ymop 2(0C3(1 m C3/C12)
c,C
Imopt = @ C +C,+ G
1
(Om) =
A oCy
gm:gmunstable/a Gm—X

~Z, = —r—joL
Fig 9-9:  Representation of the oscillator in the complex plane.
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EXISTENCE CONDITION OF ASTABLE POINT

We can also plot the impedance points —Z () as a function of
the frequency in radians. For an inductance with losses, we
obtain a straight line parallel to the imaginary axis passing
through the point on the x-axis —r. The critical oscillation condi-
tion then corresponds to the intersections A and B of the
straight line and the semi-circle. We can show that only the
point A corresponds to stable oscillations. The oscillation fre-
quency in radians ®g and the critical fransconductance Qprit
corresponding to the stable point A can be found by resolving
the system of equations (9.21) with X = = oL as a function of ®
and gy, , where R and X, are given by (9.27) and (9.28).

The negative resistance —R. of the circuit attains a minimum
(maximum in absolute value):

R = L (9.29)

C-max C3
20)C3(1 + q)

for a specific value gmgpt of the transconductance:

C1(:2
gmopt = (D(Cl'l' C2+ C3 )

(9.30)

If the loss resistance of the inductor r is greater than R .,
there is no longer an intersection, and oscillations are no longer
possible no matter what the value of the fransconductance. The
existence condition of a solution can thus be expressed as:

1

C3
1

>r (9.31)
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APPROXIMATION OF THE OSCILLATION FREQUENCY

The representation in Fig. 9-9 also allows us to qualitatively eval-
uate the influence of a variation in the capacitances C; (i=1,2,3)
on the oscillation frequency. For example, when C; and C,
decrease, the radius of the circle also decreases, and the point
A moves downward, which has the effect of increasing wp. When
C,; = 0, the semi-circle reduces to a horizontal straight line,
and ®q no longer depends on gy,. In general, the oscillation fre-
quency is a function of r and thus of the quality factor Q| of the
inductor. This is not good, because this quality factor can vary
greatly, causing a large dispersion of the oscillation frequency.

Im
A
r
| > Re
approximation : Om =0 _ 1
\‘6———-————_4_3__\4_4-4/ ®(C3+Cyy)
AT T T T T T T BN
/gngmT/ —0)0L

(DZ(DO

Fig 9-10: Approximation of the oscillation frequency.

If the losses in the inductor are small (and thus the quality fac-
tor Q is high), the vertical straight line in Fig. 9-9 approaches
the imaginary axis. The sensitivity of g to I and thus to Q| then
becomes small. In these conditions, we can approximate the cir-
cle by the tangent to the point g, = 0. An approximate value of
®q is thus given by setting g, = 0 in the term X (®,9,,) of
(9.21) and solving for ®y. We then find:

C,C
with:  Cp,= c11+ éz (9.32)

1
0 j—
JL(C3+Cyy)

®
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APPROXIMATION OF THE CRITICAL
TRANSCONDUCTANCE

For the same conditions, an approximation of the critical
transconductance can be found by solving R .(®,9,,) = I where
R. is given by (9.27) and ® by the approximation (9.32). We then

find:
1 oy 20,5(0g +1)\2
Omerit =7 - E{l_«/l_( o) ) (9.33)
2
o, +1 ® C
;% (o 2) -0 (C1+C2)(1+—3)
o QL 1

where a,=C,/C,, a3=C5/C, and Q =(wyL)/r. Eqn. 9.33
only has a solution for (205(at; +1))/(;Q ) <1 and thus for

C
Q, > 2%(1 + i) =23 (9.34)
Ay Ciy

We again find the existence condition (9.31) where o is replaced
by (9.32).
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MINIMUM CRITICAL TRANSCONDUCTANCE

':F.'. = r:'..'.';.:_'\: = 1.1

“

Tmerit I WL

4
g.a 4.2 0.4 0.6 0.4 1.0 1.2 1.2 1.6 1.8 2.0

Fig 9-11:  gperit @s a function of the ratio o, =C,/C,.

Fig. 9-11 shows that Qyrit is minimum for oy = 1, meaning for
C, = C, as long as Q; >>2a3. The minimum value of Qperit is
thus given by:

2

_1 2 _ O
Imerit-min = r (Q_L) = Q_L -2(Cy +2C5) (9.35)
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OSCILLATION START-UP TIME

Im
o A
— | > Re
I = IOSC B
A
i =0 2_L !
(1)

Fig 9-12: Start-up of oscillations.

As soon as —Re{Z_.} =R.>r, the oscillations begin to increase
exponentially, starting from the noise, with a time constant given
by:

L L

- RTIT R (9.36)

’c:

where R corresponds to a certain value of the transconductance
Om > Imerit fixed by the polarization current.

The start-up time is minimum for R. = R . and thus for
Im = Imopt- The corresponding time constant is given by:

L L

Tonin = ~ (9.37)
min I:‘)c-max —r Rc-max

= 20,LC (1 L 23) - 25

- “Po-s q B ®Cyy
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ANALYSIS USING Y AND Z PARAMETERS

I3 -l -1
—— ——>— —4—

\ Y \Z. l Z Vi
v v
active element passive feedback

network

Fig 9-13: General diagram of an oscillator.

The validity of the methods of analysis presented until now is
limited to simple circuits and to low frequency, because they do
not take into account all the parasitic elements, especially those
associated with the active element. Often this element is simply
characterized in terms of its S or Y parameters for a given
operating point. An oscillator functioning in the small-signal
regime can be modeled by the general diagram in Fig. 9-13 where
the active component is represented by its admittance matrix Y
and the feedback network by its impedance matrix Z. From the
definitions of the admittance and impedance matrices we have:

I, =y, .V, +y.,V Vo = =2..1,-2,,1
1 = Y11V tY1Vo 2 1112-21514

_ and: ] (9.38)
Iy = Y1V +YV) Vi = =2yl - 7514

We can show that the condition whereby the voltages V4 and V,
are non-zero, and there are oscillations, is given by:

Y2121 ¥ V11200 F Y2211 t Y1021, HAYAZ+1 = 0 | (9.39)

AY =Y11Y90 = YorY
with: 11722 Tal7le (9.40)
AL=171175)—7p1275

The oscillation condition (9.39) is general and can thus be applied
to practically any oscillator.
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EXAMPLE OF THE PIERCE OSCILLATOR (1/2)

I3 Y 2 -lp Z -
—)- <4+—>— ——
Col r C
V, LK V, l L L V,

v \ 1 11 v

: ma . .

active element feedback

network

Fig 9-14: General diagram of an oscillator.

9-20

The Pierce oscillator presented in Fig. 9-4 was redrawn in Fig. 9-
14, where the transistor is simply represented by its admittance

matrix. The impedance matrix of the feedback circuit ¢
calculated by applying the definitions. We find:

where: Z=r+j(X; + Xy + Xg)
From which we get: AZ = —(XX,/Z)(r +]X3)
For the transistor, we set:

Y1 = Yin Y12 = Ibgp

y21 = gm+jbm y22 = gout

©C.C.ENZ Oscillators
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(9.42)

(9.43)

(9.44)
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EXAMPLE OF THE PIERCE OSCILLATOR (2/2)
By plugging (9.41), (9.42) and (9.44) into (9.39), we find:
X1 Xy = r+Ky X+ X+ X5 =K, (9.45)
Ky ==0inX (Xg + X3) = 9o Xo(Xy + X3)
— X  X5(0:nGn s T 0 010) =0 DX, Xor
with: 1723\ inYout m=-12 m=127%172 (9.46)
Ko =0y +D12)X1 X5+ 9indoutX1X2X3
= 1(9inX1 * YoutX2) * D120 X1 X5 X3 = gpyb o X Xor
For the bipolar transistor in Fig. 9-4, by ignoring the base cur-
rent and assuming that the transistor is working at low fre-

quency, we can set Yy = Yo = Yo =0 and y,; =¢,. Under
these conditions, K; = K, = 0 and so:

XXy =1 Xi+X,+X3 =0 (9.47)
By taking X; = =1/(wC;) fori = 1,2 and X3 = oL, we find:
zgm -r - %:— 1c tol =0 (9.48)
o C,C, 0L 0L

which is just the condition (9.11). By taking the base current into
account we will get y;; =9,,/B and so

K, = —%mxl(x2+x3) Kp = 5% (9.49)
The condition (9.11) then becomes:

m r+g—mi(—i+wL)

2 B oC oC
o C,C 1 2
12 (9.50)
1 1 I9m 1
—_— — e — COL = _r__
oC; oC, B oCy

which is identical to the condition (9.16).
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QUASI-SINUSOIDAL CONTROL VOLTAGE

If 9, > Operit - 0Scillations will begin and grow. When their ampli-
tude becomes large, harmonics are generated by the non-linear-
ity of the active element. An oscillator analysis which takes
these non-linear characteristics into account is difficult, even
impossible. For the Pierce oscillator presented in Fig. 9-8,
assuming that the quality factor of the inductor is high
(Q_ =2 10), the collector current, which is rich in harmonics, is
filtered by the inductance. The current integrated over the
capacitance C; is then approximately sinusoidal. As long as the
capacitance Cj is linear, the control voltage of the bipolar tran-
sistor can also be considered to be sinusoidal:

Vpe(t) = Vggq+ AVpe - COS(wgt) (9.51)

The collector current is then given by:

VbL(t) VBEq + AVBE * COS((Dot)
o U, U, . X - cos(wgt)
i) =1 -e =g -e =1q-e (9.52)
g AV
U
where: ly=ls-e and X = —D5C (9.53)
Ur

Notice that it is essentially the parasitic capacitance C3 that
will couple harmonic components of the collector current to the
capacitance C; and add them to the control voltage Vp(t). The
hypothesis of a sinusoidal control voltage is thus only valid when
the parasitic capacitance C3 remains negligible in relation to Cy5.
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DECOMPOSITION OF THE COLLECTOR CURRENT
INTO A FOURIER SERIES

. X-cos(mgt) : : :
The function € can be expanded into a Fourier series:

o0

= ly(x) +2- Z 1,(X) - cos(negt) (9.54)
n=1
where 14(X) is the modified Bessel function of order 0 and I (X)

are the modified Bessel functions of order n. The collector cur-
rent can thus be written:

X - cos(mgt)
€

@)

io(t) = lge+ 21, Z 1,(X) - cos(Nw,t) (9.55)

n=1

where |y, represents the average value. The current i.(t) nor-
malized Yo |, is represented in Fig. 9-15 for an amplitude of 4U;
with the fundamental component 21,(X) - cos(mgyt), along with
the 2" and 3" harmonics 21,(x) - cos(nwgt) (n = 2, 3).

T
1
L]

H:T'
E =18 -.I
o
]
] ¢]|:|
E fundamental
= - "
w 2 3" harmoni e
[}
- r
I

é 20 s &

e £
E .fi'a Lt
B ] i e Sy O e T, (O LR T,
a

L ILl\...l '\,‘.
average value \I/
|

u.u 0.5 1.0 LoD .

1alt

Fig 9-15:  Collector current for x = AVge/U; = 4.
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AVERAGE VALUE OF THE COLLECTOR CURRENT

Fig. 9-15 also shows the average value of the collector current,
which becomes a function of the amplitude of the sinusoidal sig-
nal applied between the base and the transmitter:

”Iq for x <<1

| .(X) = 1, - 15(X) = X (9.56)
de a0 Iq- € for x >>1
L 27X

As indicated in Fig. 9-16, the average current |y increases rap-
idly with the amplitude of the sinusoidal signal when x > 1.

10

10°

'dﬂ .'I :q = Iﬂ:}:.

1g"

15”
0 1 2 3 4 5 & 7 B g 10
= 5?35\: ." UT
Fig 9-16: Increase of the average current as a function of the

normalized amplitude of the sinusoidal signal.
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HARMONIC COMPONENTS OF THE COLLEC-
TOR CURRENT

10

) [dB]

0

20 logllpeay  lgp! and 20 leglil, |

x = AVgg / Up
Fig 9-17: Fundamental component and harmonics as functions
of the normalized amplitude of the sinusoidal signal.

Fig. 9-17 shows the harmonic components of the collector cur-
rent given by (9.55), normalized to the average value
lye = Iq - 15(X) , as well as the normalized peak value:

X
beak — € - /2nx for x >>1 (9.57)
lyc 1o(X)

We remark that the amplitude of the fundamental grows rapidly
and becomes approximately equal to the average value when
AVge is slightly greater than Ut. It tends tfoward an asymptotic
value equal to 21 . (+6 dB in Fig. 9-17).
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EFFECTS OF NON-LINEARITIES OF THE ACTIVE
ELEMENT

The active element (often reduced to a transconductance) gen-
erally has non-linear characteristics which generate harmonics.
If the quality factor of the resonant circuit is high (as for
quartz resonators or SAWSs), the current | that traverses the
resonant RLC circuit can be considered to be sinusoidal, even if
the voltage V is strongly distorted. Thus, the exchange of
energy between the active circuit and the resonator mainly
takes place at the fundamental frequency. The non-linear active
circuit can thus be replaced by its equivalent impedance Z.; at
the fundamental frequency. This is defined by:
V1

I

ZCl =— (9.58)

where Vq is the complex voltage of the fundamental component
V, which depends on the amplitude of the sinusoidal current I.
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TRANSCONDUCTANCE FOR THE FUNDAMENTAL

At low frequency, the variations in current Al 1 and the varia-
tions in the control voltage AVge for the fundamental frequency
are in phase. The small-signal fransconductance g, can thus be
replaced by the (real) transconductance for the fundamental
Gy(1) 9iven by:

IOI 21,(x) 21,(x)

Cnw =TT 000

(9.59)

where the index (1) refers to the fundamental and g, =1,/Uy
is the transconductance without an applied signal (x = 0). The
function G, 1,/9p, is represented in Fig. 9-18 as a function of
the normalized amplitude X=AVge/U. We remark that Gy
decreases rapidly to attain about 50% of the maximum value
obtained in the small-signal regime for an amplitude of 3.5-Ut or
around 90 mV.

T

GIII 113

0= .ﬂ"i.fE_E: I ET

Fig 9-18: Transconductance for the fundamental as a function of
the amplitude of the oscillations.
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LIMITATION OF THE AMPLITUDE

~3rit

0 1 2 3 4 5 6 'l 8 g 10
¥ = ‘:—‘I'"JBE ) [.-T

Fig 9-19: Polarization current normalized to the critical current
as a function of the amplitude of the oscillations.

The amplitude of the oscillations will stabilize at a certain value
for which Gm(1 = Omerit- From this equality we get the polari-
zation current | necessary to obtain a certain oscillation ampli-
tude:

X - 14(X)
0

l, = 1. = 9.60
q crit 2|1(X) ( )
where |...:=0crit - Ut The current |, normalized to Iyt is
represented as a function of the normalized amplitude
AVge/Us in Fig. 9-19. We remark that for large amplitudes,
this currents tends toward the asymptotic value:

Iq crit’ Z_UT = Ymerit o

12

for AVge >>U; (9.61)
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EXAMPLE (1/4)

f, = 10 MHz
AV; =100 mV

QL:lO
C3:1pF

Fig 9-20: Example of the dimensioning of a Pierce oscillator.

We would like to realize a Pierce oscillator according to the dia-
gram and specifications of Fig. 9-20. Knowing that the franscon-
ductance and thus the energy consumption is minimum for
C, = C, and that these capacitances must be at least one
order of magnitude greater than the parasitic capacitances (in
particular C; = 1 pF) in order to be able to control the oscilla-
tion frequency, we take C; = C, = 10 pF. So C;, = 5pF.
From (9.32) we have

_ 1
L = 2
(2nfy)2(C3+Cyy)

= 42.22 uH

The loss resistance of the inductance is given by:
r = (2nfyl)/Q = 26526Q. it IS 9given by (9.33) and is
Opmerit = 150.86“vA, from which we get the critical current
l.;it = 3-9uA. The effective transconductance Gm(l) and the
polarization current |, in order fo have an oscillation amplitude
of AV, = 100mV can thus be deduced from (9.60) with
X = AV,/U; = 3.865. We find |, = 8.79uA.

The circuit above has been simulated with Spice and the simula-
tion results are given in Fig. 9-21.
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EXAMPLE (2/5)

1.0 1.5 k|
MM g7 T e
| | | | |
G50 =
T 00 |- .
'E 550 —
=
500 f— I 2 2
450 - !
4x100 ns
700 — — 704
650 [ L
=
E em |- £00
a fg = 10 MHz )
— 550 — C-; - CE = 10 pF 550
N Ca} =1 FF |:0.1 — |:|1: ~
00 - 42,2 H s00
=10 (r = 265 €}
azp L Qr e p 1 a5g
Gnerit = 130.5 pASV
B0 — [lecrit = 3.9 pb =7 &0
60 —|lg = .79 pA &0
£0 |— ﬂﬂ ag
< 20 |- ﬂ ﬂ 20
=
= 0 ”“Uﬂ\a’ﬁvﬂvﬂ Jlﬂlll ﬂ 4]
2 AR §
el e
-4 |- -40
-60 |— -E0
<80 I I N
0.0 §.5 1.0 1.5 2.0 2.5 1.0

time [us]

Fig 9-21:  The supercritical condition with 1, > I,
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EXAMPLE (3/5)

Ve .
L q
r
X Cs
A 1>—|
—C4 - C
'__L
0.0 0.5 1.4 1.5 2.0 2.5 3.0
632.5 632.5
I | | |

§32.0 [ — s32.0
= Eaalis §31.5

= |
il §31.0

5 1
=  B30.5 [— 830.5
B30.0 f— — §30.0
g29.5 L— fg = 10 MHz Qp = 10 (r =265 02 | greens

Cy = Cy = 10 pF Gnerit = 150.9 pA/Y

BAR R Cy=1pF {0y = 0.1} leorit = 3.9 A — 632.5
632.0 L =42.2 pR Iy = 3.9 pA I s
% £31.5 — £31.5
R l §31.0
“ B30.5 [— ' £30.5
§30.0 — §30.0
gz9.5 L— — g25.5
8O0 — o aoo

I{L1} [na]

2 3 3
—L L
E———
———
P ——
E——
I —— ]
I ——
I ——
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———
i ——
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—
I ——
A ——
I—
T
I ——
———
I —
———
E——
I ——
I ——
E———
———
I —
I———
——
— 4
S g

time [ps]
Fig 9-22: The critical condition with Iq = |

ccrit-
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9-32

.E.

£ .

E Oerit = 150.9 WA/

s lorir = 3.9 pa

= Iy = 2 ph

E

3 R e
-100 VUUU\}UUUU — -100
-200 o
=300 | I I I -30

g.4Q 0.5 1.4 1.5 .0 z.5 3.0
time [us]
Fig 9-23:  The subcritical condition with 1, <1 ;.
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EXAMPLE (5/5)

Fig. 9-24 shows the simulation results obtained by replacing the
ideal transistor of Fig. 9-20 by the MMBR941 used in Chapter 7
(cf Fig. 7-12). We notice that the simulation is not very differ-
ent from that obtained with the ideal ftransistor. Specifically,
the oscillation frequency is still 10 MHz, but the amplitudes at
nodes 1 and 2 are smaller (75 mV for V(1) and 90 mV for V(2)
instead of 100 mV).

Vil) [mv]
2
I

50—
o ideal bipolar model
500 = — complete MMBRS41 model
azp L
700 — . - — 700
N itz
; F L0 il
650 P I Vi U
= 5
E  goo H s00
2 550 (— [fo = 10 MHz 550
Cj_ = ':; = 10 ?F r
500 |—-|C3 = 1 pF {0ty = 0.1} - 500
L =42.2 uH I
asp L- O = 10 [r = 265 L) B
Bo: — | TTEE % 1509 WAl i Bl
‘et = 2.3 HA |
S0 g = 8.79 A o
40 40
i 20 ' ' 4
= g i FHEHH 0
= _an i} ¥ i ® A -20
-4 18 1+ 4] = HH -40
VUL RPN WO I 211
60 |- | ¢ |||J ll ,I iy i ||! U .I IL |] -60
i | | |+ i I [:' iF ¥ b -0
0.0 B.5 1.0 1.5 2.0 2.5 %
time [lsz]
Fig 9-24: Simulation with the transistor MMBR941.
©C.C.ENZ Oscillators 19.3.08



9-34
NON-LINEAR EFFECTS (1/3)

Fig 9-25: Circuit used for the simulation of the impedance for the
fundamental Z;, ;.

The graph in Fig. 9-9 corresponds fo a linear analysis and thus
does not take the non-linear effects introduced by the active
element into account. These non-linear effects can be studied by
simulating the circuit of Fig. 9-25 on which a sinusoidal current
;. is applied, and having the simulator calculate the correspond-
ing voltage V;,. We can then do a FFT of the voltage V;, and
evaluate the amplitude of the fundamental V;,,. The funda-
mental's impedance Z.q) is then simply given by the ratio
Vinc1)” lin- We can repeat this operation for different ampli-
tudes I;, and for different polarization currents l,. We then
find the graphs of Fig. 9-26.

Fig. 9-26 a) presents the impedance points for the fundamentals
Z1y as functions of the polarization current |, varying from
1 uA to 1.728 mA and for different amplitudes of the sinusoidal
current signal I;, ofl pA, 50 pA, 100 pA, 200 pA, and 500 pA.
We remark that for small amplitudes (I;, = 1uA) we once again
find the circle obtained during the linear analysis. This circle
then turns into an ellipse when the amplitude of the sinusoidal
signal increases due to non-linear effects.
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NON-LINEAR EFFECTS (2/3)

Fig. 9-26 b) presents the location of the impedance points for
the fundamentals Z 1) as a function of the amplitude of the
sinusoidal current signal I;, varying from 1 yA to 1 mA for dif-
ferent polarization currents Iq 20 pA, 100 pA, 200 pA, 500 pA,
and 1 mA. For each of these polarization currents, the location
starts on the circle with a direction tangent to the circle when
the amplitude is small, and then gets farther away from this cir-
cle. By considering for example the curve corresponding to
|, = 200pA, we remark that the operating point can be rather
far from the one that we would obtain using linear analysis. It is
even possible that this intersection point doesn't exist anymore
due to these non-linear effects. In fact, if we assume that the
resistance I is equal to 5 kQ, when the polarization current is
greater than 200 pA, the trajectory no longer crosses the
straight line corresponding to the impedance of the inductor.
There are then no longer any operating points and the oscilla-
tions don't begin even though the polarization current is greater
than the critical current.
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a) Zin(l) as a function of the polariza-
tion current I from 1 ©Ato 1.728 mA

NON-LINEAR EFFECTS (3/3)

Re{Z;} [k

and for different amplitudes I;,, of the
applied sinusoidal signal.

Fig 9-26: Impedance of the fundamental Z;, , as a function of
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EXAMPLE
It is interesting to verify with simulations that if the polariza-
tion current is large, the oscillations are not likely to begin. By

taking once again the graph in Fig. 9-9, we can calculate the g,
corresponding to the intersection point B

o 20.,(a, + 1) 2
Ym-unstable = - ""}{1 + N/1_[‘'"":i"""l“""""] } (9-62)

r 20(% OC;LQL

which in the preceding example was 375mA/V, which corre-
sponds fo a polarization current of 9.75mA. Fig. 9-27 corre-
sponds to a simulation for a current of 20mA. It indeed shows
that the oscillations do not begin.

0.0 0.5 1.0 1.5 Z.0 z.5 3.0
B52.0 I I T T I B52.0
BSL.% M+ —{ BEl.9
= B51.8 [ —| B51.8
8 =] 851
=
= B5l1.6 HH ]1 fo = 10 MHz — B51.%
asi.s H Sl x bl — 851,58
Cy=17pF I:EIE = §.1]
B5l.4 L =42.2 pl — B51.4
Qg = 10 {r = 265 €
) Grerit = 130.3 pR/V -
350 H- loorir = 3.9 pA — &30
g = 20 md
= q —
g 300 300
_ Bs0 M B50
]
= oo il — 80
a — 780
20 H- - 20
1] = 10
O AT
o a MMMI’II'lMlﬂﬂhﬂnnnnunuhunun“nvﬁuﬁuh vvvvvvvvvvvvvvvvvvvvvvvvv a
: NUWWUWWWUWWUWW
10 — -10
-20 | I I -20
0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [us]
Fig 9-27:  Condition 1,>>1. ;.
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QUARTZ (1/2)
" 1L, Cw i R | | motional
| mk ~mk |, Rmk |
package o I impedance Z,
4y lL_____--_____ Iforthemodek
1oH| |Ho2 L] —
b Cio
0 1o | 02
-
Cio == V = C20
symbol -
C.qC
10720
0 Cop << Cyqop+
mk 127 C10*Cap

equivalent circuit
Fig 9-28: Symbol and equivalent circuit diagram for quartz.

The symbol for quartz and its equivalent circuit diagram are
shown in Fig. 9-28. For each mechanical oscillation mode k there
is a corresponding series resonant circuit R, L, C, for which
the series impedance is called motional impedance Z_,. The
inductance L, translates the effect of the mass, the capacity
Cy that of the compliance (elasticity), and the resistance R
that of the losses of the mechanical resonator. Each mechanical
oscillation mode can be characterized by its resonant frequency
® . and its quality factor:

Ol _ 1
Ry R Cy

Omk =

>>1  (9.63)

Due to the boundary effects, these frequencies o, are usually
not whole mul’rlples of each other. Since Q, >> 1 when the
crystal oscillates in a certain mode k all the other branches can
be ignored. even if the voltage V(1) contains significant harmonic
components. The motional current 1, can then be considered to
be sinusoidal. even if the voltage N ( t) /s strongly distorted.
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QUARTZ (2/2)

In order to simplify the notation, we consider a single mode k
and omit the corresponding index. The motional impedance Z , is
given by:

— J ( ® Com)
Z =R+ — _
n = R o Clo. o (9.64)
We define the relative frequency spread (pulling) by:
®-
p=—1 = 20 (9.65)
(Dm (Dm

In an oscillator, the resonant frequency in radians o is always
very close to the motional frequency ., and so p << 1. The
motional impedance is thus approximated by:

. 2P
= + | — .
Zp = R¥j=5% (9.66)

The mechanical oscillation energy is given by:

_ L e
E, = > T T (9.67)
20,C
while the dissipated mechanical power is:
2 2
p = RIIE_ ]I (9.68)

m 2  20,QC

where |l| corresponds to the amplitude of the sinusoidal current.
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THE QUARTZ OSCILLATOR

Xtal =

]
1

TR

| A
R |
I O_‘
O—>— ’ =
Vinl 1 Cg J ideal partitioning
o T ——C, for the analysis
+ Cy 7 gl !nc:uges glo
includes
T 2 20

and C5 includes C,

Fig 9-29: Quartz Pierce oscillator.

Fig. 9-29 shows the Pierce oscillator of Fig. 9-4 where the
inductor has been replaced by quartz. The best way to partition
the circuit in order to carry out the negative resistance method
of analysis is to consider the parasitic capacitances C;y, Cy
and C;, to be a part of the circuit, and to isolate the series
branch of the quartz resonator. Since the current flowing in this
series branch can be considered fo always be sinusoidal, the
exchange of energy between the circuit and the series branch of
the resonator always happens at the fundamental frequency. The
effects of the non-linearities of the active circuit can thus be
entirely characterized by the impedance Ze1y=Vin)/ lin
where V;, ) is the complex amplitude of the fundamental. In
addition, the frequency dependence of Z.4, around o, is
orders of magnitude smaller than that of Z  and so the fre-
quency ® can be considered to be constant and equal to o, dur-
ing the evaluation of Z. ), while the frequency dependence of
Z., is expressed in terms of the "pulling” p according to (9.65).
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LINEAR ANALYSIS OF THE QUARTZ OSCILLATOR

The linear analysis of the quartz oscillator of Fig. 9-29 is car-
ried out in the same way as that for the LC oscillator. The dif-
ference is that the location of the impedance of the inductor as
a function of ® is replaced by that of Z according o (9.66)
with the "pulling” p as a parameter instead of ®. The circuit
impedance Z. is the same as (9.26). The location of the imped-
ance Z. as a function of g, is then identical to that of Fig. 9-9.
We then obtain the impedance locations presented in Fig. 9-30.
The results are identical fo those already obtained for the LC
oscillator.

- ' C Im
chs[l + —:j A
Cl
\ﬂ —R. -R
—g—= | » Re
i 19m=9mcrit 0m=0 1
(Dz(l)o -
P T T T o e 0(C3+Cpp)
_2p
oC o - C,C,
127 ¢, +C,
_________ | X,
g :g __________ B _ 1 + 2C3/C12
m mopt 2®C3(1 - CS/Clz)
| N
C,C ~Z. = -R-j=&
= 172 oC
gmopt = (D[C1+C2+ C3 ]
1
Zc(gm) - Q)_C3
) Om—>%

Fig 9-30: Representation of the quartz oscillator in the complex
plane.
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“OVERTONE” QUARTZ OSCILLATOR

Xtal

—i[J— '
lc2 gL,

:

C]_:

Fig 9-31: ““Overtone” Pierce oscillator.

The resonant frequency of quartz oscillators for the fundamen-
tal mode is typically limited fo 100 MHz. Nevertheless, we can
force the resonator to oscillate not at the fundamental, but at a
higher mode (generally the 3™ or 5™). The oscillation condition
(9.47) requires that X; and X, have the same sign, and that
X1+ X5+ Xy = 0. For the resonator to oscillate at a higher
mode, it is necessary for the parallel LC circuit to have a nega-
tive reactance (or be capacitive) at the overtone frequency. We
can evaluate the oscillation frequency by replacing X, and X, by

oL .2
st meew ()] e

where o ~=1/,/L,C, and where we have ignored the capaci-
tances Cy, and C,. So that X, <0 at the oscillation frequency,
it is necessary that ®| - <®,,. X5 is thus positive when o > ®,.
The oscillation frequency will then be slightly greater than o,
and also greater than o . Of course this analysis is a rough
approximation, because it assumes that the transistor has been
reduced to a simple transconductance, which is definitely not
the case at overtone frequencies.
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EXAMPLE: COMMON BASE OSCILLATOR

VCC =12V
R, fo = 10 MHz
B =100
L

R =1.5kQ

Fig 9-32: Common base oscillator.

We would like to analyze and dimension the oscillator in Fig. 9-32
for a frequency of 10 MHz. We will compare the results obtained
using the three proposed methods of analysis.
The first step of the linear analysis is o draw the small-signal
diagram. We then get the diagram in Fig. 9-33.

o] s T
L [Jeg Vi BL [l
RE] C2 Re TC
£ - _;_ - -

Fig 9-33: Equivalent small-signal diagram.
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ANALYSIS USING THE BARKHAUSEN CRITERION

~OmVin _T_ !
Cq L
Vout L [ Geq R_<< (DOCZ
R E

Fig 9-34: Small-signal equivalent circuit diagram in open loop.

| S|

In the diagram in Fig. 9-33, we can virtually open the loop
between the voltage Vi and the current controlled by this volt-
age. We then get the diagram presented in Fig. 9-34. We can
simplify the calculations by assuming that 1/R<< o,C, which
is The same as neglecting Rg. The open-loop gain is thus given by:

GH = g, 1150 (9.70)
S(C1CoLs2 + GggL(Cy +C,)s+Cy +Cp)

By applying the Barkhausen criterion we find the conditions for
the real and imaginary parts:

C1CoLw? ~ (g Gegl + C1 +Cy) = 0

(9.71)
GeqL(Cy + Cplo?~g, = 0
We can solve (9.71) for g, and ® and find oy and g it
0. = 1
0 =
2

«/L(C12_Geq L) (9.72)
_ Gg(C1+Cy)  0p(C+Cy)

Imerit = C12—Gg L - Q

where C,=C,C,/(C;+C,) and Q= 1/(0006 L). We remark
that a solution exns’rs only for Cp> G gL
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THE NEGATIVE CONDUCTANCE METHOD (1/2)

—qg 'Vl * O—4¢—
m —LCl 1
vi DV m<<ogC,
Re E

Fig 9-35: Calculation of the parallel admittance.

The losses of the parallel resonant circuit are represented in
the diagram in Fig. 9-33 by the conductance G,,. These losses
must be compensated by a negative conductance provided by the
circuit in Fig. 9-35. By assuming once again that 1/Re<< 0,C,
and that g,,Rg >> 1 we find the input admittance Y, :

.+ B = . (9.73)

The (negative) conductance G;,, must thus be equal to —Geq and

the susceptance B;, must be equal to (DLL:

2
Cin=5—— 5 = ~Ceq
gy t0°(Cy +Cy)

(9.74)

~

®3C,C,(C; +Cy) 1

from which we find the resonant frequency in radians, and the
critical transconductance. We find the same results given by
(9.72) and obtained by using the Barkhausen criterion.
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THE NEGATIVE CONDUCTANCE METHOD (2/2)

As for the Pierce oscillator, we can represent the admittance
points Y;, in the complex plane as a function of the parameter
J,, (cf Fig. 9-36). In the same plane, we can also plot the admit-
tance points -G, —1/]Jol as a function of ®. The intersection
presented in Fig. 9-36 then corresponds to the operating point
(for small signals). From this figure, we can also find an exist-
ence condition for this operating point. In fact, the parallel con-
ductance Geq must remain smaller than -©C,,/2. We also
remark that the approximation of the circle by the tangent at
J, = O gives avalue close to w, that is to say:

w,=1/ JLCy, (9.75)
1 Im
-G, — —- I
q J(DL\ gm =0
. . 4(0(:12
Im mcreasmg/
C1(:2
Yin(gm ClZ_C1+C2
o increasing *
oCyy
175
Op > ®©
Re
~0C1 4.
2

Fig 9-36: Y;, points as a function of g, and
R S 1/(joL) as a function of .
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ANALYSIS BY THE Y AND Z PARAMETER METHOD

_gm'Vl Cl
= I
Vl Re Geqlﬁ %L C
v T
Y Z

Fig 9-37: Calculation of the parallel admittance.

The diagram in Fig. 9-33 is redrawn in Fig. 9-37 to highlight the
elements of the ¥ and Z matrices. By ignoring the resistance R,
the Y and Z matrices are given by:

jol(C,+Cy) joLC, |
Y = gm 0 7 = N((D) N(O)) (976)
—0y, O joLC, mGeqL—j(l—cochl)
N(w) oN(wm)

where N(co)E(Cl+CZ)—m2C1C2L+j(oGeqL(Cl+C2). By applying the
relation (9.39) and separating the real and imaginary parts, we
find the following conditions:

~g. +®2G, L(C,+C,) =0
\ m T Feq 1T 2 (9.77)

2 —
gy Geqlk + ©?LC;Cy=Cy - Cy = 0

from which we can find the resonant frequency and the critical
transconductance. Once again, we get the same results as with
the analysis using the Barkhausen criterion, given by (9.72).

©C.C.ENZ Oscillators 19.3.08



9-48
DIMENSIONING OF THE COMMON BASE OSCILLATOR

VCC =12V
! f, = 10 MHz
[I]Rc:47kQ 0
B =100
éLzluH
» CL=1pF
C.=1uF | Rp=330kQ |
T C,=500pF
Co1yiF [JRL=15kQ
C,=500pF

Fig 9-38: Dimensioned common base oscillator.

We simplify the calculations by assuming that wy=1/,/LC,, .
We remark from (9.72) that, as for the Pierce oscillator, the

transconductance is minimum when C; = C, is minimum. For
C, = C, = 500pF we find L = 1pH. To satisfy the condition
1/Rg<< 0yC, we will fake R = 3kQ. In addition,

Geq = I/Ry+1/R =1/R| = 0.667puA/V
The critical transconductance is approximately given by:
Omerit = Geq(Cp +C3)/Cpp = 4G, = 4/R
To start up the oscillations we take
On = 3 Omerit = 12/R. = 8mA/V

from which we find the current I, = 208pA. The base current
being B = 100 times smaller, we take Rz = BRg = 300kQ.
With U; = 0.6V we find R; = 47kQ. Simulation results are
given in JFig. 9-39. The average period over 10 periods is 993ns
corresponding to 10.0/MHz while the amplitude is about
300mV.
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SIMULATION OF THE COMMON BASE OSCILLATOR
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Fig 9-39: Simulation of the oscillator
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LC OSCILLATOR WITH TWO TRANSISTORS

Fig 9-40: LC oscillator with two transistors.

When we allow ourselves to use more than one transistor for the
realization of an LC oscillator, we can go back to the diagram
presented in Fig. 9-40. This diagram is very much used for real-
izing integrated VCOs oscillating around 1 GHz. This oscillator is
interesting because it consists of only two active nodes (in con-
trast with the "three point" oscillator which has 3). All the para-
sitic capacitances of these two nodes can thus be absorbed in
the functional capacitances. By assuming that there is no load,
only the losses due to the series resistance r of the inductor
must be compensated. We can thus Tr'anszfor'm the series resist-
ance to a parallel resistance Rp = (oL) /r or RIO = QoL .
The corresponding conductance will need to be compensated by
the negative conductance of the circuit which has the value
—0,,/ 2. The resonant frequency in radians is simply given by:

_ |2
Wy = A/;C—) (9.78)

and the critical transconductance by:

0,C

Omerit = —Q_L (9.79)
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IMPORTANCE OF PHASE NOISE IN TRANSMITTERS
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Fig 9-41: General diagram of a transmitter.
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Fig 9-42: a) Frequency conversion by an ideal oscillator.

b) Reciprocal mixing.

c)Effect of phase noise in transmitters.
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SIGNAL-TO-NOISE RATIO
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Fig 9-43: Degradation of the SNR by the phase noise.
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EXAMPLE OF PHASE NOISE

-70 ]
£ [ \ "7,6*|
g 0 > O3

| So

.U.. -90 oo’b/;,
'g -100 <
@ 110
« .
i
0.-12(1)0‘ 2 3 45878445 2 3 @

Offset Frequency, Hz
Fig 9-44. Phase noise measured in an LC oscillator.
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Fig 9-45: Phase noise measured in a ring oscillator.

©C.C.ENZ Oscillators 19.3.08



